الانحدار الموزون جغرافياً Geographically Weighted Regression

القائمة الرئيسية

الصفحات

الانحدار الموزون جغرافياً Geographically Weighted Regression

لمتابعة موقعنا ليصلك كل جديد إضغط هنا


Geographically Weighted Regression

أداة الانحدار الموزون جغرافياً

ArcMap ArcGIS

How to use Geographically Weighted Regression Tool in Arc Toolbox??

كيفية استخدام أداة الانحدار الموزون جغرافياً ؟؟
Geographically Weighted Regression

كيفية استخدام أداة الانحدار الموزون جغرافياً ؟؟

Path to access the toolمسار الوصول الى الأداة

:

Geographically Weighted Regression Tool, Modeling Spatial Relationships Toolset, Spatial Statistics Tools Toolbox

 Geographically Weighted Regression Tool

Geographically Weighted Regression

Performs Geographically Weighted Regression (GWR), a local form of linear regression used to model spatially varying relationships.

An enhanced version of this tool has been added to ArcGIS Pro 2.3. This is the tool documentation for the deprecated tool. It is recommended that you upgrade and use the new Geographically Weighted Regression tool in ArcGIS Pro or later.

يقوم بتنفيذ الانحدار الموزون جغرافيًا (GWR) ، وهو شكل محلي من الانحدار الخطي يستخدم لنمذجة العلاقات المتغيرة مكانيًا.

تمت إضافة إصدار محسّن من هذه الأداة إلى ArcGIS Pro 2.3. هذه هي وثائق الأداة للأداة المهملة. يوصى بالترقية واستخدام أداة الانحدار الموزون جغرافيًا الجديدة في ArcGIS Pro أو أحدث.

1.    Input features ادخل المعالم

The feature class containing the dependent and independent variables.

فئة المعلم التي تحتوي على المتغيرات التابعة والمستقلة.

Dependent variable

The numeric field containing the values that will be modeled.

Explanatory variable(s)

A list of fields representing independent explanatory variables in the regression model.

Output feature class

The output feature class that will receive dependent variable estimates and residuals.

Kernel type

Specifies whether the kernel is constructed as a fixed distance, or if it is allowed to vary in extent as a function of feature density.

Bandwidth method

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

2.    Dependent variable المتغير التابع

The numeric field containing the values that will be modeled.

الحقل الرقمي الذي يحتوي على القيم التي سيتم نمذجتها.

Explanatory variable(s)

A list of fields representing independent explanatory variables in the regression model.

Output feature class

The output feature class that will receive dependent variable estimates and residuals.

Kernel type

Specifies whether the kernel is constructed as a fixed distance, or if it is allowed to vary in extent as a function of feature density.

Bandwidth method

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

3.    Explanatory variable(s) المتغير (المتغيرات) التفسيرية

A list of fields representing independent explanatory variables in the regression model.

قائمة الحقول التي تمثل المتغيرات التوضيحية المستقلة في نموذج الانحدار.

Output feature class

The output feature class that will receive dependent variable estimates and residuals.

Kernel type

Specifies whether the kernel is constructed as a fixed distance, or if it is allowed to vary in extent as a function of feature density.

Bandwidth method

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

4.    Output feature class فئة المعلم المخرجة

The output feature class that will receive dependent variable estimates and residuals.

فئة ميزة الإخراج التي ستتلقى تقديرات متغيرة تابعة وبقايا.

Kernel type

Specifies whether the kernel is constructed as a fixed distance, or if it is allowed to vary in extent as a function of feature density.

Bandwidth method

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

5.    Kernel type نوع النواة

Specifies whether the kernel is constructed as a fixed distance, or if it is allowed to vary in extent as a function of feature density.

· FIXED—The spatial context (the Gaussian kernel) used to solve each local regression analysis is a fixed distance.

· ADAPTIVE —The spatial context (the Gaussian kernel) is a function of a specified number of neighbors. Where feature distribution is dense, the spatial context is smaller; where feature distribution is sparse, the spatial context is larger.

يحدد ما إذا كانت النواة مبنية على أنها مسافة ثابتة ، أو إذا كان مسموحًا لها بالتنوع في المدى كدالة لكثافة الميزة.

• ثابت - السياق المكاني (النواة الغاوسية) المستخدم لحل كل تحليل انحدار محلي هو مسافة ثابتة.

• التكيف - السياق المكاني (النواة الغاوسية) هو دالة لعدد محدد من الجيران. عندما يكون توزيع الميزات كثيفًا ، يكون السياق المكاني أصغر ؛ عندما يكون توزيع الميزات متناثرًا ، يكون السياق المكاني أكبر.

Bandwidth method

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

6.    Bandwidth method طريقة عرض النطاق الترددي

Specifies how the extent of the kernel will be determined. When AICc (corrected Akaike Information Criterion) or CV (cross validation) is selected, the tool will find the optimal distance or number of neighbors for you. Typically, you will select either AICc or CV when you aren't sure what to use for the distance or number_of_neighbors parameter. Once the tool determines the optimal distance or number of neighbors, however, you'll use the BANDWIDTH_PARAMETER option.

· AICc—The extent of the kernel is determined using the Akaike Information Criterion.

· CV—The extent of the kernel is determined using cross validation.

· BANDWIDTH_PARAMETER—The extent of the kernel is determined by a fixed distance or a fixed number of neighbors. You must specify a value for either the distance or number_of_neighbors parameters.

يحدد كيف سيتم تحديد مدى kernel. عند تحديد AICc (معيار معلومات Akaike المصحح) أو السيرة الذاتية (التحقق المتقاطع) ، ستجد الأداة المسافة المثالية أو عدد الجيران المناسبين لك. عادةً ، ستحدد إما AICc أو CV عندما لا تكون متأكدًا مما يجب استخدامه لمعلمة المسافة أو معامل number_of_neighbours. بمجرد أن تحدد الأداة المسافة المثلى أو عدد الجيران ، ستستخدم خيار BANDWIDTH_PARAMETER.

AICc - يتم تحديد مدى النواة باستخدام معيار معلومات Akaike.

• السيرة الذاتية - يتم تحديد مدى النواة باستخدام التحقق المتقاطع.

BANDWIDTH_PARAMETER - يتم تحديد مدى النواة بمسافة ثابتة أو عدد ثابت من الأجهزة المجاورة. يجب تحديد قيمة إما لمعلمات المسافة أو معلمات number_of_neighbours.

Distance (optional)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

7.    Distance (optional) المسافة (اختياري)

The distance to use when the Kernel type parameter is set to FIXED and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

المسافة التي يجب استخدامها عند تعيين معلمة نوع Kernel على Fixed وتعيين معلمة طريقة النطاق الترددي على BANDWIDTH_PARAMETER.

Number of neighbors (optional)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

8.    Number of neighbors (optional) عدد الجيران (اختياري)

The exact number of neighbors to include in the local bandwidth of the Gaussian kernel when the Kernel type parameter is set to ADAPTIVE and the Bandwidth method parameter is set to BANDWIDTH_PARAMETER.

العدد الدقيق للجيران المراد تضمينه في النطاق الترددي المحلي لنواة Gaussian عندما يتم تعيين معلمة نوع Kernel على ADAPTIVE ويتم تعيين معلمة طريقة النطاق الترددي على BANDWIDTH_PARAMETER.

Weights (optional)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

9.    Weights (optional) الأوزان (اختياري)

The numeric field containing a spatial weighting for individual features. This weight field allows some features to be more important in the model calibration process than others. This is useful when the number of samples taken at different locations varies, values for the dependent and independent variables are averaged, and places with more samples are more reliable (should be weighted higher). If you have an average of 25 different samples for one location but an average of only 2 samples for another location, for example, you can use the number of samples as your weight field so that locations with more samples have a larger influence on model calibration than locations with few samples.

الحقل الرقمي الذي يحتوي على ترجيح مكاني للمعالم الفردية. يسمح حقل الوزن هذا بأن تكون بعض الميزات أكثر أهمية في عملية معايرة النموذج من غيرها. يكون هذا مفيدًا عندما يختلف عدد العينات المأخوذة في مواقع مختلفة ، ويتم حساب متوسط قيم المتغيرات التابعة والمستقلة ، وتكون الأماكن التي تحتوي على المزيد من العينات أكثر موثوقية (يجب ترجيحها أعلى). إذا كان لديك ما متوسطه 25 عينة مختلفة لموقع واحد ولكن متوسط عينتين فقط لموقع آخر ، على سبيل المثال ، يمكنك استخدام عدد العينات كحقل وزنك بحيث يكون للمواقع التي تحتوي على المزيد من العينات تأثير أكبر على معايرة النموذج من المواقع التي تحتوي على عينات قليلة.

Coefficient raster workspace (optional)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

10. Coefficient raster workspace (optional) مساحة عمل المعامل النقطي (اختياري)

The full path to the workspace where the coefficient rasters will be created. When this workspace is provided, rasters are created for the intercept and every explanatory variable.

المسار الكامل إلى مساحة العمل حيث سيتم إنشاء المعامل النقطية. عندما يتم توفير مساحة العمل هذه ، يتم إنشاء نقطية للتقاطع وكل متغير توضيحي.

Output cell size (optional)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

11. Output cell size (optional) حجم خلية الإخراج (اختياري)

The cell size (a number) or reference to the cell size (a path to a raster dataset) to use when creating the coefficient rasters.

The default cell size is the shortest of the width or height of the extent specified in the geoprocessing environment output coordinate system, divided by 250.

حجم الخلية (رقم) أو مرجع إلى حجم الخلية (مسار إلى مجموعة بيانات نقطية) لاستخدامه عند إنشاء المعامل النقطي.

حجم الخلية الافتراضي هو أقصر عرض أو ارتفاع للمدى المحدد في نظام إحداثيات إخراج بيئة المعالجة الجغرافية ، مقسومًا على 250.

Prediction locations (optional)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

12. Prediction locations (optional) مواقع التنبؤ (اختياري)

A feature class containing features representing locations where estimates should be computed. Each feature in this dataset should contain values for all of the explanatory variables specified; the dependent variable for these features will be estimated using the model calibrated for the input feature class data.

فئة معلم تحتوي على ميزات تمثل المواقع التي يجب حساب التقديرات فيها. يجب أن تحتوي كل ميزة في مجموعة البيانات هذه على قيم لجميع المتغيرات التوضيحية المحددة ؛ سيتم تقدير المتغير التابع لهذه الميزات باستخدام النموذج الذي تمت معايرته لبيانات فئة ميزة الإدخال.

Prediction explanatory variable(s) (optional)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

13. Prediction explanatory variable(s) (optional) المتغير (المتغيرات) التفسيرية للتنبؤ (اختياري)

A list of fields representing explanatory variables in the Prediction locations feature class. These field names should be provided in the same order (a one-to-one correspondence) as those listed for the input feature class Explanatory variables parameter. If no prediction explanatory variables are given, the output prediction feature class will only contain computed coefficient values for each prediction location.

قائمة الحقول التي تمثل المتغيرات التوضيحية في فئة معالم مواقع التنبؤ. يجب تقديم أسماء الحقول هذه بنفس الترتيب (تطابق واحد لواحد) مثل تلك المدرجة لمعلمة متغيرات توضيحية لفئة خاصية الإدخال. إذا لم يتم تقديم متغيرات توضيحية للتنبؤ ، فإن فئة ميزة التنبؤ بالإخراج ستحتوي فقط على قيم المعامل المحسوبة لكل موقع تنبؤ.

Output prediction feature class (optional)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

14. Output prediction feature class (optional) فئة معلم توقع المخرجة (اختياري)

The output feature class to receive dependent variable estimates for each feature in the Prediction locations feature class.

فئة معلم المخرجة لتلقي تقديرات متغيرة تابعة لكل معلم في فئة معلم مواقع التنبؤ.

 اليك صفحه ومجموعة على الفيس بوك لتعلم أكثر بما يخص نظم المعلومات الجغرافية (GIS) و برنامج ArcGIS Pro من خلال هذه الروابط:


مجموعة على الفيس بوك ArcGIS Pro من هنا.
مجموعة على الفيس بوك GIS for WE - ArcGIS Pro من هنا.
صفحة الفيس بوك GIS for WE من هنا.

 

GIS for WE

تعليقات

التنقل السريع
    >