Create Spatially Balanced Points and Densify Sampling Network Tools
Create Spatially Balanced Points
أداة إنشاء نقاط متوازنة مكانيًا
ArcMap ArcGIS
How to use Create Spatially
Balanced Points Tool in Arc Toolbox ArcMap ArcGIS??
كيفية استخدام أداة إنشاء نقاط متوازنة مكانيًا ؟؟
Path
to access the toolمسار الوصول الى الأداة
:
Create
Spatially Balanced Points Tool, Sampling Network Design Toolset, Geostatistical
Analyst Tools Toolbox
Create Spatially Balanced Points
Generates a set of
sample points based on inclusion probabilities, resulting in a spatially
balanced sample design. This tool is generally used for designing a monitoring
network by suggesting locations to take samples, and a preference for
particular locations can be defined using an inclusion probability raster.
يولد مجموعة من نقاط العينة بناءً على احتمالات
التضمين ، مما يؤدي إلى تصميم عينة متوازن مكانيًا. تُستخدم هذه الأداة بشكل عام
لتصميم شبكة مراقبة من خلال اقتراح مواقع لأخذ عينات ، ويمكن تحديد تفضيل مواقع
معينة باستخدام البيانات النقطية لاحتمالية التضمين.
1.
Input inclusion probability raster إدخال
احتمالية النقطية
This raster defines the
inclusion probabilities for each location in the area of interest. The location
values range from 0 (low inclusion probability) to 1 (high inclusion
probability).
تحدد هذه البيانات النقطية احتمالات التضمين لكل
موقع في منطقة الاهتمام. تتراوح قيم الموقع من 0 (احتمال إدراج منخفض) إلى 1
(احتمال إدراج مرتفع).
Number of
output points
Specify how many sample locations to generate.
Output
point feature class
The output feature class contains the selected sample locations and their
inclusion probabilities.
2.
Number of output points عدد نقاط
الإخراج
Specify how many sample
locations to generate.
حدد عدد مواقع العينات المراد إنشاؤها.
Output
point feature class
The output feature class contains the selected sample locations and their
inclusion probabilities.
3.
Output point feature class فئة ميزة
نقطة الإخراج
The output feature class
contains the selected sample locations and their inclusion probabilities.
تحتوي فئة معلم الإخراج على مواقع العينة المحددة
واحتمالات تضمينها.
Densify Sampling Network
أداة تكثيف شبكة أخذ العينات
ArcMap ArcGIS
How to use Densify Sampling
Network Tool in Arc Toolbox ArcMap ArcGIS??
كيفية استخدام أداة تكثيف شبكة أخذ العينات ؟؟
Path
to access the toolمسار الوصول الى الأداة
:
Densify
Sampling Network Tool, Sampling Network Design Toolset,
Geostatistical Analyst Tools Toolbox
Densify Sampling Network
Uses a predefined
geostatistical kriging layer to determine where new monitoring stations should
be built. It can also be used to determine which monitoring stations should be
removed from an existing network.
يستخدم طبقة كريغ إحصائية جغرافية محددة مسبقًا
لتحديد المكان الذي يجب أن تُبنى فيه محطات المراقبة الجديدة. يمكن استخدامه أيضًا
لتحديد محطات المراقبة التي يجب إزالتها من شبكة موجودة.
1.
Input geostatistical layer إدخال
طبقة إحصائية جغرافية
Input a geostatistical
layer resulting from a Kriging model.
أدخل طبقة إحصائية جغرافية ناتجة عن نموذج Kriging.
Number of
output points
Specify how many sample locations to generate.
Output point
feature class
The name of the output feature class.
Selection
criteria (optional)
Methods to densify a sampling network.
· STDERR—Standard error of prediction criteria
· STDERR_THRESHOLD—Standard error threshold criteria
· QUARTILE_THRESHOLD — Lower quartile threshold criteria
· QUARTILE_THRESHOLD_UPPER — Upper quartile threshold criteria
The Standard error of prediction option will give extra weight to
locations where the standard error of prediction is large. The Standard error
threshold, Lower quartile threshold, and Upper quartile threshold options are
useful when there is a critical threshold value for the variable under study
(such as the highest admissible ozone level). The Standard error threshold
option will give extra weight to locations whose values are close to the
threshold. The Lower quartile threshold option will give extra weight to
locations that are least likely to exceed the critical threshold. The Upper
quartile threshold option will give extra weight to locations that are most
likely to exceed the critical threshold.
The equations for each option are:
Standard error of prediction = stderr
Standard
error threshold = stderr(s)(1 - 2 · abs(prob[Z(s) > threshold] - 0.5))
Lower
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) < threshold])
Upper
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) > threshold])
Threshold
value (optional)
The threshold value used to densify the sampling network.
This parameter is only applicable when STDERR_THRESHOLD,
QUARTILE_THRESHOLD, or QUARTILE_THRESHOLD_UPPER selection criteria is used.
Input
weight raster (optional)
A raster used to determine which locations to weight for preference.
Input
candidate point features (optional)
Sample locations to pick from.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
2.
Number of output points عدد نقاط
الإخراج
Specify how many sample
locations to generate.
حدد عدد مواقع العينات المراد إنشاؤها.
Output
point feature class
The name of the output feature class.
Selection
criteria (optional)
Methods to densify a sampling network.
· STDERR—Standard error of prediction criteria
· STDERR_THRESHOLD—Standard error threshold criteria
· QUARTILE_THRESHOLD — Lower quartile threshold criteria
· QUARTILE_THRESHOLD_UPPER — Upper quartile threshold criteria
The Standard error of prediction option will give extra weight to
locations where the standard error of prediction is large. The Standard error
threshold, Lower quartile threshold, and Upper quartile threshold options are
useful when there is a critical threshold value for the variable under study
(such as the highest admissible ozone level). The Standard error threshold
option will give extra weight to locations whose values are close to the
threshold. The Lower quartile threshold option will give extra weight to
locations that are least likely to exceed the critical threshold. The Upper
quartile threshold option will give extra weight to locations that are most
likely to exceed the critical threshold.
The equations for each option are:
Standard error of prediction = stderr
Standard
error threshold = stderr(s)(1 - 2 · abs(prob[Z(s) > threshold] - 0.5))
Lower
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) < threshold])
Upper
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) > threshold])
Threshold
value (optional)
The threshold value used to densify the sampling network.
This parameter is only applicable when STDERR_THRESHOLD,
QUARTILE_THRESHOLD, or QUARTILE_THRESHOLD_UPPER selection criteria is used.
Input
weight raster (optional)
A raster used to determine which locations to weight for preference.
Input
candidate point features (optional)
Sample locations to pick from.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
3.
Output point feature class فئة ميزة
نقطة الإخراج
The name of the output
feature class.
اسم فئة ميزة الإخراج.
Selection
criteria (optional)
Methods to densify a sampling network.
· STDERR—Standard error of prediction criteria
· STDERR_THRESHOLD—Standard error threshold criteria
· QUARTILE_THRESHOLD — Lower quartile threshold criteria
· QUARTILE_THRESHOLD_UPPER — Upper quartile threshold criteria
The Standard error of prediction option will give extra weight to
locations where the standard error of prediction is large. The Standard error
threshold, Lower quartile threshold, and Upper quartile threshold options are
useful when there is a critical threshold value for the variable under study
(such as the highest admissible ozone level). The Standard error threshold
option will give extra weight to locations whose values are close to the
threshold. The Lower quartile threshold option will give extra weight to
locations that are least likely to exceed the critical threshold. The Upper
quartile threshold option will give extra weight to locations that are most
likely to exceed the critical threshold.
The equations for each option are:
Standard error of prediction = stderr
Standard
error threshold = stderr(s)(1 - 2 · abs(prob[Z(s) > threshold] - 0.5))
Lower
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) < threshold])
Upper
quartile threshold = (Z0.75(s) - Z0.25(s)) · (prob[Z(s) > threshold])
Threshold
value (optional)
The threshold value used to densify the sampling network.
This parameter is only applicable when STDERR_THRESHOLD,
QUARTILE_THRESHOLD, or QUARTILE_THRESHOLD_UPPER selection criteria is used.
Input
weight raster (optional)
A raster used to determine which locations to weight for preference.
Input
candidate point features (optional)
Sample locations to pick from.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
4.
Selection criteria (optional) معايير
الاختيار (اختياري)
Methods to densify a
sampling network.
·
STDERR—Standard error of prediction criteria
·
STDERR_THRESHOLD—Standard error threshold criteria
·
QUARTILE_THRESHOLD — Lower quartile threshold criteria
·
QUARTILE_THRESHOLD_UPPER — Upper quartile threshold criteria
The Standard error of
prediction option will give extra weight to locations where the standard error
of prediction is large. The Standard error threshold, Lower quartile threshold,
and Upper quartile threshold options are useful when there is a critical
threshold value for the variable under study (such as the highest admissible
ozone level). The Standard error threshold option will give extra weight to
locations whose values are close to the threshold. The Lower quartile threshold
option will give extra weight to locations that are least likely to exceed the
critical threshold. The Upper quartile threshold option will give extra weight
to locations that are most likely to exceed the critical threshold.
طرق تكثيف شبكة أخذ العينات.
• STDERR - الخطأ القياسي لمعايير التنبؤ
• STDERR_THRESHOLD — معايير عتبة الخطأ القياسية
• QUARTILE_THRESHOLD - معايير العتبة الربعية الأدنى
• QUARTILE_THRESHOLD_UPPER - معايير عتبة الربع الأعلى
سيعطي خيار الخطأ القياسي للتنبؤ وزناً إضافياً
للمواقع التي يكون فيها الخطأ القياسي للتنبؤ كبيراً. تعتبر خيارات عتبة الخطأ
القياسية ، وعتبة الربيع الأدنى ، وخيارات عتبة الربعية الأعلى مفيدة عندما تكون
هناك قيمة عتبة حرجة للمتغير قيد الدراسة (مثل أعلى مستوى أوزون مقبول). سيعطي
خيار حد الخطأ القياسي وزنًا إضافيًا للمواقع التي تكون قيمها قريبة من الحد
الأدنى. سيعطي خيار العتبة الربعية الأدنى وزناً إضافياً للمواقع الأقل احتمالاً
لتجاوز العتبة الحرجة. سيعطي خيار عتبة الربع الأعلى وزنًا إضافيًا للمواقع التي
يُرجح أن تتجاوز العتبة الحرجة.
المعادلات الخاصة بكل خيار هي:
The equations for each
option are:
Standard
error of prediction = stderr
Standard error threshold = stderr(s)(1 - 2 ·
abs(prob[Z(s) > threshold] - 0.5))
Lower quartile threshold = (Z0.75(s) -
Z0.25(s)) · (prob[Z(s) < threshold])
Upper quartile threshold = (Z0.75(s) -
Z0.25(s)) · (prob[Z(s) > threshold])
5.
Threshold value (optional) قيمة
الحد (اختياري)
The threshold value used
to densify the sampling network.
This parameter is only
applicable when STDERR_THRESHOLD, QUARTILE_THRESHOLD, or
QUARTILE_THRESHOLD_UPPER selection criteria is used.
القيمة الحدية المستخدمة لتكثيف شبكة أخذ العينات.
هذه المعلمة قابلة للتطبيق فقط عند استخدام معايير
اختيار STDERR_THRESHOLD أو QUARTILE_THRESHOLD أو QUARTILE_THRESHOLD_UPPER.
Input
weight raster (optional)
A raster used to determine which locations to weight for preference.
Input
candidate point features (optional)
Sample locations to pick from.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
6.
Input weight raster (optional) وزن
الإدخال النقطي (اختياري)
A raster used to
determine which locations to weight for preference.
نقطية تستخدم لتحديد المواقع التي يجب ترجيحها حسب
التفضيل.
Input
candidate point features (optional)
Sample locations to pick from.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
7.
Input candidate point features (optional) إدخال ميزات نقطة مرشح (اختياري)
Sample locations to pick
from.
عينة من المواقع للاختيار من بينها.
Inhibition
distance (optional)
Used to prevent any samples being placed within this distance from each
other.
8.
Inhibition distance (optional) مسافة
التثبيط (اختياري)
Used to prevent any
samples being placed within this distance from each other.
تستخدم لمنع أي عينات يتم وضعها ضمن هذه المسافة
من بعضها البعض.
اليك صفحه ومجموعة على الفيس بوك لتعلم أكثر بما يخص نظم المعلومات الجغرافية (GIS) و برنامج ArcGIS Pro من خلال هذه الروابط:
مجموعة على الفيس بوك
ArcGIS Pro من
هنا.
مجموعة على الفيس بوك
GIS for WE - ArcGIS Pro من
هنا.صفحة الفيس بوك
GIS for WE من
هنا.
تعليقات
إرسال تعليق